Fast Algorithms for Toeplitz and Hankel Matrices

نویسندگان

  • Georg Heinig
  • Karla Rost
چکیده

The paper gives a self-contained survey of fast algorithms for solving linear systems of equations with Toeplitz or Hankel coefficient matrices. It is written in the style of a textbook. Algorithms of Levinson-type and of Schur-type are discussed. Their connections with triangular factorizations, Padè recursions and Lanczos methods are demonstrated. In the case in which the matrices possess additional symmetry properties, split algorithms are designed and their relations to butterfly factorizations are developed. AMS classification: 65F05, 15B05, 15A06, 15A23

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part Ii. Algorithms

In the rst part 13] of the paper transformationsmappingToeplitz and Toeplitz-plus-Hankel matrices into generalizedCauchy matrices were studied. In this second part fast algorithms for LU-factorization and inversion of generalized Cauchy matrices are discussed. It is shown that the combinationof transformation pivoting techniques leads to algorithms for indeenite Toeplitz and Toeplitz-plus-Hanke...

متن کامل

Split Algorithms and ZW-Factorization for Toeplitz and Toeplitz-plus-Hankel Matrices

New algorithms for Toeplitz and Toeplitz-plus-Hankel are presented that are in the spirit of the “split” algorithms of Delsarte/Genin. It is shown that the split algorithms are related to ZW-factorizations like the classical algorithms are related to LU-factorizations. Special attention is paid to skewsymmetric Toeplitz, centrosymmetric Toeplitz-plus-Hankel and general Toeplitz-plus-Hankel matr...

متن کامل

Transformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices. I. Transformations

Transformations of the form A + E’FAg2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be p...

متن کامل

Fast Polynomial Transforms Based on Toeplitz and Hankel Matrices

Many standard conversion matrices between coefficients in classical orthogonal polynomial expansions can be decomposed using diagonally-scaled Hadamard products involving Toeplitz and Hankel matrices. This allows us to derive O(N(logN)) algorithms, based on the fast Fourier transform, for converting coefficients of a degree N polynomial in one polynomial basis to coefficients in another. Numeri...

متن کامل

Transformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part I. Transformations

Transformations of the form A ! C 1 AC 2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. C 1 and C 2 are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques,in part II algorithmsfor Toeplitz and Toeplitz-plus-Hankel systems will be p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010